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Abstract 
ZIlao, Atlas and Xlarks JZAM) have empirically 

slioivn that generalized tirrre-frequency represei~taions 
with cone shaped lternels display quite good time fre- 
quency representations in comparison to other ap- 
proaches. The double diamond (DD) GTFR intro- 
duced in this paper is subsumed in the cone support. 
ar~d also displays some remarkable performance at- 
t,ribnt,es. The coriventional sliding window spcctro- 
fram,has a single diamond shape window support. 
n thrs paper, we analyze some specific properties 

of the DD and % A M  GTFR's and compare thein 
to ot,lier TFR's. For stationary tone signals, both 
t,he DU and ZAM GTFR are shown asymtotically to 
produce resiilts idenlical to that of the spectrogram. 
M'lren a sinnal is subjected to white noise, the DD 
and %AM ~ T F R ' S  produces an unbiased estimate of 
the, GTFR of the signal without noise. For GTFR's 
satrsfymg the marginals, the power spectral density 
of the noise, rather, is superi~nposed on the GTFR of 
the signal. The DD GTFR is shown to have superb 
mid frequency interference properties almost identi- 
cal to that of the spectrogram. The temporal rise 
time of the DD GTFR is comparable that of the ZAM 
GTRF and Wi ricr distributions. The leakage prop- 
erties of Ihe U% GTRE can be significantly better 
than those of t,lic ZAM GTRF, Wigner distribution 
and spectrogram. 

1 Introduction 

Tlic Generalized Tirne Frequency lleprenentation (GTFR) of 
Colien [ I ?  21 is a poxverful generalization of time frequerrcy 
rc7prcsc:ntations in which a. nnmber of important special cases 
;ire suhsnmed, These il~clude the spectrogram, Wigner dis- 
tribalion, C W  G'I'FR (Clioi, Liiilliarns) [3, 41 and the ZAM 
GTFR (Zhao, Atlas and Marks) [5, 61. 

In this paper, we introduce the double diamond (DD) 
Gr1'E'lt and analytically establish some significant properties 
of the Z A M  [ 5 ,  6,  101 and DD GTFR's. Specifically 

1. LS'pectrogram relation: For the case of a superpositiori 
o f  a number of sinusoids, the DD and ZAM GTFR's 
asymtotically approach the spectrogram. 

2 .  1nterJCerer~ee term: Thc D D  and ZAM GTFR are a i ~ o i ~ ~ - ,  
to  significantly outperform the Wigner distribution in 
terms of interference snppression. Indeed, we will present 
irnporhnt scenarios where the DD GTFR has inte~.fer- 
cnce characteristics that  are ncarly indistinguishable 
from those oC the spectrogram. 

A comparative illtistration of five TFR's is shown in 
17igul.cs 1 alid 2 for two coriverging linear chirps. Inter- 
fercricc can also be seen ill  the multi-on/oEtone signal 
s l~own in a. watevf>ill clisplay in E'igiire 3 and in a gray 
level plot in F ig l~ ic  11. 

Figure 1: Five TFR's of two linearly converging chirps. Each 
has a 39dn spread from floor to peak. From top t o  bottom 
are tlic spectrogram, Wigner, CW, ZAM and DD GTFR's. 
Each TFlt was computed using a Hanning window. Each 
used thi: same sigrial interval (128 points) for each spectral 
Ii~ic. The  spectrogram displays the desired V shape. The  
IVigner distribution conlains an  oscillating interference tern1 
mitl\vay betxvecn the frcqnencies. The CW CTFR spreads 
this interlercnce while maintaining the marginals. 'The ZAM 
GTFR liss higher interference than the DD GTFR. 
! 'igure 2: Gray level plots of the TFR's in  Fignrc 1. 

3. Frequency resolutiol~: Frerjnency resolutiori is mcasured 
by examining how close two stationary tories can he 
placed in frequency such that they are still distin- 
giiishable in the TFI?.. Due t o  the interference term, 
the TVigner distribution performs pooriy in this regard 
and is ther~fore outperformed by the ZAM GTFR.. As 
the T F R  of choice for stationary signals, however, the 
spectrograni has even better frequency resolution. We 
will show, however, that the DD GTFK can have fre- 
quency resolutiori properties qnite close to  those of the 
spectrogram. 
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1,"gilre 3: Five TFlt 's  of a number of switched tones. The 
'I'E'IL's were conlputed as in Figure 1. 

Figure 4: Gray level plots of the TFR's in Figure .3 

4. Time resolution: The a.bility of the T F R  to make the 
transition in an instantaneous frequency change is an 
ilrcLication of tlre TFR's time resolution capability. Itre 
illustrate that  the rise time for the DD and ZAM GTFR's 
can be close to  that of the Wigner distributions. The 
ripple in tlre DD ZAM GTFR can be substantially 
smaller than that of the Wigner distribution. The DD 
GTFR, in particular, displays impressive ripple per- 
rforma,nce. It's response prior to  point of transition 
is nearly zero. The spectrogram displays correspond- 
ingly poor time resolution performance. (See Figures 
1-4). 

5. Noise sensitivity: When a signal is corrupted by addi- 
tive white noise, the DD and ZAM GTFR's displays 
an  unbiased estimate of the corresponding GTRF of 
the noiseless signal. This is contrast to  the Wigner 
tlistribution and spectrogram where the power spec- 
tral density of the noise is added to  the result. Noise 
sensitivity is illustrated in Figure 5 for the TFR's of a 
sequence of four tones. 

'Tile DD and ZAM GTFR's are also real and shift-invariant. 
As is tlle case with the spectrogram, the DD and Z.iJ.1 

I; I FR's do not obey the marginals, [I, 21 i . e .  the integral 
projection onto the time axis of the ZAM GTFR does not 
rcsult in tlle signal's instantaneous power, nor does the Ilro- 
jection onto the frequency axis result in t,he power spectral 
density. Thus, unlike the Wigner-ViUe and Choi-Williams 
distributions, the ZAM GTFR cannot be interpreted as a 
tirne-frequency density function for the signals. Recent re- 
sults [12] suggest, however, that significantly higher resolu- 
tion in both time and frequency can be bollght with sacrifice 
of Lhe rnarginals. The analytic and empirical results in this 
paper are further evidence of this proposition. 

2 Characteristics of the DD and ZAM 
GTFR's 

In this section, we derive some important performance at- 
tributes of the continuous time DD and ZAM GTFR and 
contrast them to  tlre Wigner distribution and spectrogram. 
-4 summary of some of our conclusions is listed in Table 1. 
Other distributions and attributes will also be considered. 
IT-e lvill, in each case: define the attribute and analyze the 
corresponding TFR performance. 

2 .1  The DD and ZAM GTFR's 

The general continuous time formula of Cohen's G T F R  class 

\\here 42; r )  is the GTFR kernel. 
The kernel function of the ZAM GTFR is 

where p ( r )  is a windowing function and n ( t )  = 1 for / t 15 
and is otherwise zero. For p(r) = l / l r j ,  we have Cohen's 
Born-Jordan kernel [I, 21. Tapers other than uniform have 
also been proposed [12]. 

If p ( r )  is identically zero for I r I >  T, then cone shaped 
region of support of ( 2 )  is shown in Figure 6. 

X DD GTFR has a kernel that  is zero in the double 
diamol!,i area illustrated in Figure 6. The support of the 
Iicrirel i* parameterized by T. The  DD GTFIl  can he written 
as 

n.here integration is over all ( t , r )  in the double diamond 
centered at  t = s. As with the ZAM GTFR,  the DD GTFR 
can be shorvn to be real when tlle kernel displays certain 
symmetry constraints [I]. As is the case with the ZAh4 
GTFR, it can also be negative. Note that  the DD kernel 
is subsumed in the cone. 

In the next section, Tve show that  the positive portion 
of both the ZAM and DD GTFR's approach the sanle re- 
sponse as that  or the spectrogram for certain statio~rary sig- 
nals. r o t e  that by setting the negative portions of the Z4hI 
GTFR to zero, we obtain the projection onto the nearest 
llonnegative function, i.e. we obtain the closest non-negative 
~ i i n e  frequency representation in the mean square sense. 

2 2 Stationary Signal Time Response 

I'ol a number of stationary tones, both the DD and ZXhI 
GTTR cdn approach a spectrogram as T Increases We rvlll 
g i ~ c  a detall proof for the case of the ZAM GTFR 

Let C( t ,  f ,B)  be the ZAM GTFR wlth 

where O ( 7 1 )  is the normalized windowing function. Define 
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Figure 5: Five TFR's of a sequence of four tones in noise a t  
a 3dB SKI<. 'Vl~e rnallilcr of coni l )~t :~t ion and display is the I'ic111.r 6: The  cone (left) and double diamond (riglit) sup- 

. arnc as is decribed in the caption of Figure 1. ports corresponding t o  a window duration of 27'. 

;ir~tl 
f 1 

e j 2 ) ( < l j  = jcl P ( : L ) ~ ? - J ~ ~ ~ ~ ~ u  (6) > 

I o exp!ure the intrrfcrerlce properties for iilternlediatc 
J ' ~ , .  tlic. %!\M (>.i '~lt :  p ( ~ )  = 0 for / r I> T, we can write (2) valrics of T, assume the stationary signal ill (8) llas two 
as ,  ternis 

?- ,t+ !d r ( t )  = ~ ~ e 3 ' " j l ~  + ~ ~ e ~ ~ ~ j 2 ~  ( 9 )  
c ( ~ ,  R = [ R ($1 I ( 3  + f) 

I .J-r t - i . I  For the, Z A M  GTFR, we can write 

DD GTFR 

yes 
better 

best 

~i~al i lc  1: Summary of attributes of four time-frequency distril~i~tiorrs. Tlic t r i t  of tile 

paper shoi~ld be consulterl for elaboration on the meaxling of and th r  specific i~letliotls 

( 7 )  c'(t .  f :  P )  = ~ j ' ) ( t ,  f :  ,7) + C ~ , ( , 2 ) ( f ,  f; (1) (10) 
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II'c c;rii now state tile following property for stationary sig- 
nal?; wit!! ;I finite ~ ~ n r n h e r  nf frequency con~poncnts. It follows tha t  the interfcrencc term is [ll] 

Z A M  GTFR. I Spectrogran~ 
yes yes 

t~ es t 

bet,ter fair 
better best 

1 j ' 0 ( ~ ~ )  is bnl~r~rlrd 1 i 7 ~ ( 1  hu.s finite energy, then, for both %;iiiZd n.1ic.r.e tile f r eq~~ency  nlidpoint is f = ( f l  +- J2)/2.  1'11t, rnng 

U I ) ~  11E GT'F1t':j liitude of thc iiiterfercncc is the cosine's enveli>pc.. 

fair 

yes no 

\ Y I I ( ~ I . C ~  .I i:> tlctcr::?irrciI 1);. \\-iritlo\~,iiig. A proof for the Z.4h'I 
(:'l.I.'R is in Ilcl'c~~cncc~ [ I  I ]  

better 

yes no 

:\ sign~ficai:!. !)i.ol)!en~ in lliarly GTFR's is the appearance 
nl ir~iir.alrtcti inl,c,~.fc:r~:r~c:c. terms. J'or two simultancous frc- 
ilcc~lc.ic-s, 1 1 1 ~  interlc~ri~nce term typically appears midway be- 
i1r.cc11 L!IP li.rcjiirncies. As is illuslratcd in Figures 1-4, the 
I ) ] )  a~i t l  %.\M G'!'I'R's rctlucc the interference ttxrms signif- 
j ca~~t ly .  l~itlced . from tile rcsnlts of the previous section on 
1 : isyr~:t~>I~c Q ~ L I ~ V ~ ! ~ T > < < ~  U S  t l , ~ ,  DD and Z A M  CTFR'6 t c i  

t,!ii. hpcctrr~gra:n, n.c a1.e giinralitc3ed no interference tcrrrls 
tiritl\\-;IF lietwct,n th1. I'i.c~qi~cnry a s  T i m. 

w11cr.c A f = 1 Jl - J21. 
ITrc will n o ~ v  silo~v that  the iritcrferellce term can di'c~.ease 

21s ~ l ( { ' l ' A f ~ } - ~ )  for hot11 the Dl) and % . i h l  CTFll's. 11-P 
1 1 c l ~  corisider orily t,lle 2411 GTFR. If t h r  ~v indon .  R ( u ) ,  is 
liioiroto~lically decrrasirrg for 0 5 u 5 1. t l ~ c n  



( J l  - J2)T 

Figuve 7: Interfercnce measures for the Wigner distribution. 
%AM GTPR,  DD GTFR and spectrogram. The DD GTFR 
and spectrogram plots use the log scale on the right and are 
grapliically indistinguishable. The ZAhl GTFR and Il'igner 
use log scale on the left. 

Iron1 which we conclude [ I  ~ m [ @ ( ~ ) ( f ) ]  151 B(O)/(.rr f )  1. Tlius. 
fxorn (I!), we have the following interference bound for the 
ZrlM G I F R .  

x ( A f ;  T )  < 4Q(O) 
IXIIIX~I - ?r2TAf2 (13) 

'rllc interference is completely removed as T(A f ) 2  + co 

2.4 Frequency Resolution 

A11 important characteristics of a GTFR is the closeness a t  
which two freql~encies can be resolved. As we will sho~i, 
t1ia.t both the DD and ZAM GTFR can display quite good 
frequency resolution properties. 

Assume that  the signal x(t) is as in (9) with X1 = X2 = 
X. IVe will evaluate the resolution measure 

IVc now compare the performance of the spectrogram. 
LVigncr distribution, ZAht and DD GTFR's using IIanning 
~viridows in each case. For a FIanning window, 0(u)  = cos2(.rru/2) 

I'ivst, zoirsider the ZAM GTFR. From (10). Tve can write 
[ [ I ]  

~ $ 1 , ~  = 2 
x p ~ e [ @ ( l )  (?/2)] - ~ m [ @ ( ~ )  (p/2)] 

x p I ~ e [ @ ( ~ )  (0) + @(l)  (p)] + Irn[0(2)(0) + @(2) ( p ) ]  

Tor tlie spectrog:arri with a Hanning window, the reso- 
li~tioli measure IS 

&'or tlie LVigner distribution, we have 

Lastly. for the DD GTFR,  

where 

and 

\ ,  

Figure 7 shows the resolution measures of the spectro- 
gram,  LVigner distribution, ZAM and DD GTFR's rectan- 
gular and Hanning windows. Remarkably, the values for 
i;,(t: T )  arc graphically indistinguishable from that  for the 
double diamond BDD( t ;  T). Note the different scales for the  
plot. 

2.5 Time Resolution 

. h i  important characteristic of a T F R  is its response to  rapid 
nonstationarity. An indication of this property is the anal- 
ysis of the TFR's  response t o  a sinusoid whose frequency 
chailges abruptly. We can denote such a signal by 

The performance of a T F R  in resolving this transition will 
he lllustratcd by the function 

For the rectangular windowed double diamond, this func- 
tlon is 

~vliere y = t / T .  
Tor the rectangular windowed ZAM GTFR,  this function 

is 

i [ ~ i n c ( ~ ) ] ~  - 2ysinc(2p) - 2y2[sinc(yp)l2 
C z ~ a r ( l ;  T) = +2y(1 + y)sinc(2yp) ; t  5 0 

1 - (1  - r)2{1 - (sinc[(l - ?)P])~);  t > 0. 

Tlie corresponding functions for the Wigner dist,ribution and 
spectrogram are, respectively, 



Figure 8: The  response of a n  abrupt freequency transtition 
fro111 j1 to  f:! n~onitorcd a t  f2 for the IVigner distribution, 
spectrogram, ZAM GTFR and DD GTFR for (fi - fz)?' = 
50. 'I'lic DD GTFR tlisplays quit,e a good rise time without 
oscillation. 

t / T  
1'iglri.e 9: Sa.rne as tllc previous figure, except (fi - h ) T  27 5. 
T11e DD GTrFR again displays quite a good rise time without 
o.cii!.;bio~l. 

1 
( ' \ ( I :  7')  = ? [ [ I  + + 2[1 -- 72)si~ic[2(i - ;,)p] 

+(L - y)"sinc[[l - *j)p]}2] 

I-igur.c, S ;~ri(i 9 s l~ow the response on freqi~ency line f2 for 
[<JIII. I'I''11.1. Note that ,  in both Sgures, the DD GTFR re- 
S / ) O ! I \ ~ '  ( 1 : i . ' ~  i l ~ i  oscillate prior to  the irxrisition, yt>t displays 
t~~ i i l r ,  a siial,p terriporal response. The plot in Figurc 9 i i  rc- 
(1,- ,In . 11 d! . .I. . t1iik:rcnt scxic ill Figure 10 to investigate leakage 
('11'1~t;. l'lit. D!) (:T!'11 clearly has tllc hest ieakagi.prop?rty 
of 1 i~osc: 'l'!~'li's siiorvl~. 

2.6 Noise Effects 

11 s ig~~i i icant  p~.oblem of the TVigner distribution is its Iiigil 
 loi is(. sensitivity. 1'0 compare the noise propertics of TFIt 's,  
wc gissurnc that  t i le signal undcr examination is corru1)tcd 
liy anc! zcv.o niear~ wide sense stationary noise, n ( t ) ,  with 
aritocorrelation 

Figure 10: Same as the prevloi~s figure, except the scale has 
I,eci~ changed 6 0  examinc) lealtage. T h e  DD G T F R  ! . ; I \  111.1 
hes t property in this regard. 

wiicrr 'E' denotes tile expectation operator. For a G7 F11. 
\vlri::li satisfies the  rnargirial constraints, the  mean of the 
CTPR result is the  sum of the value of the G'TFR without 
noise and the  spectral density of the noise [13, 141. Such 
i , ~  [lie case for the  CW GTFR and the Wigner distribution. 
Sucli is not the case for the DD or ZAhI GTFR's. TVe can 
establish, rather, the  following useful property. 

Property 2 Let !he kernel, d ( t ;  r )  be such thut 

Then,  when a signal is corrupted by  wide sense stationary 
i l o i ~ e ,  the resulting GTFR will be an  unbiased eslinzatz of 
/ l i e  G2'FR of the signal without noise. 

.A proof is in reference [I I]. Since both thc  DD and Z A l l  
C;TI7it pinch l o  zero a t  the origin of the ( t ,r j  plane, lhcy 
ia.ti:,fy (21). Thus. in  the  presence of wide scnse statio1;- 
.lry white i~oise, tlie 1111 aild Z h M  GTFR.'s generates an 
ir~ihiascd estimate of tlic Z!\P4 GTFR wit l~out  noisc,. 'L'!I(~ 
ililbiascdness, i~owever, conies a t  the  p~ic,e of no longer bciiig 
ah!e to  satisfy the instailtaneou~ power marginal. In ofher  
ivortis, unlike the  T2'ignt:i. distribution arid C\Ir GTFlL, the 
'111c-giation of l.lic ZAM CCTFR. over all frequelicy docs not 
1.esu1t in the iiistanl.aneous power of' llic signal [I]. 

3 Conclusion 

\Ve have investigated rclativc perforinancc attributes of tile 
',XI1 and DD GTRF's. 'Slie DD G T R F  appears to l!x;e 
:-om quite remarltable performa.nce at tributes. E'urtlicr ~.oi.Ii 
; s  1,equircd to liirther define a i ~ d  uriderstaird t l ~ c  cxterrt, t ~ n t l  
Iioiita,tions of sorne of thesc proper tic,^. 
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