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Abstract

Zhao, Atlas and Marks (ZAM) have empirically
shown that generalized time-frequency representaions
with cone shaped kernels display quite good time fre-
quency representations in comparison to other ap-
proaches. The double diamond (DD) GTFR intro-
duced in this paper is subsumed in the cone support,
and also dispFays some remarkable performance at-
tributes. The conventional sliding window spectro-

ram has a single diamond shape window support.
n this paper, we analyze some specific properties
of the DD and ZAM GTFR’s and compare them
to other TFR’s. For stationary tone signals, both
the DD and ZAM GTFR are shown asymtotically to
produce results identical to that of the spectrogram.
When a signal is subjected to white noise, the DD
and ZAM GTFR’s produces an unbiased estimate of
the GTFR of the signal without noise. For GTFR’s
satisfying the marginals, the power spectral density
of the noise, rather, is superimposed on the GTFR of
the signal. The DD GTFR is shown to have superb
mid frequency interference properties almost identi-
cal to that of the spectrogram. The temporal rise
time of the DD GTFR is comparable that of the ZAM
GTRF and Wigner distributions. The leakage prop-
erties of the DD GTRF can be significantly better
than those of the ZAM GTRF, Wigner distribution
and spectrogram.

1 Introduction

The Generalized Time Frequency Representation (GTFR) of
Cohen [1, 2] is a powerful gencralization of time frequency
representations in which a number of important special cases
are subsumed. These include the spectrogram, Wigner dis-
tribution, CW GTFR (Choi, Williams) [3, 4] and the ZAM
GTI'R (Zhao, Atlas and Marks) [5, 6].

In this paper, we introduce the double diamond (DD)
GTI'R and analytically establish some significant properties
of the ZAM [5, 6, 10] and DD GTFR’s. Specifically

1. Spectrogram relation: For the case of a superposition
of a number of sinusoids, the DD and ZAM GTFR’s
asymtotically approach the spectrogram.

2. Interference term: The DD and ZAM GTFR are shown
to significantly outperform the Wigner distribution in

terms of interference suppression. Indeed, we will present

important scenarios where the DD GTFR has interfer-
ence characteristics that are nearly indistinguishable
from those of the spectrogram.

A comparative illustration of five TFR’s is shown in
Pigures 1 and 2 for two converging linear chirps. Inter-
ference can also be seen in the multi-on/off tone signal
shown in a waterfall display in Figure 3 and in a gray
level plot in Figure 4.

24ACSSC-12/90/1055 $1.00 © 1990 MAPLE PRESS

Figure 1: Iive TFR’s of two linearly converging chirps. Each
has a 35dB spread from floor to peak. From top to bottom
are the spectrogram, Wigner, CW, ZAM and DD GTFR’s.
Each TFR was computed using a Hanning window. Each
used the same signal interval (128 points) for each spectral
line. The spectrogram displays the desired V shape. The
Wigner distribution contains an oscillating interference term
midway between the frequencies. The CW GTTR spreads
this interference while maintaining the marginals. The ZAM
GTFR has higher interference than the DD GTFR.

igure 2: Gray level plots of the TFR’s in Figure 1.

3. Frequency resolution: Frequency resolution is measured
by examining how close two stationary tones can be
placed in frequency such that they are still distin-
guishable in the TFR. Due to the interference term,
the Wigner distribution performs poorly in this regard
and is therefore outperformed by the ZAM GTTR. As
the TFR of choice for stationary signals, however, the
spectrogram has even better frequency resolution. We
will show, however, that the DD GTFR can have {re-
quency resolution properties quite close to those of the
spectrogram.



Iigure 3: Five TFR’s of a number of switched tones. The
TFR’s were computed as in Figure 1.

Figure 4: Gray level plots of the TFR’s in Figure 3.

4. Time resolution: The ability of the TFR to make the
transition in an instantaneous frequency change is an
indication of the TFR’s time resolution capability. We
illustrate that the rise time for the DD and ZAM GTFR’s
can be close to that of the Wigner distributions. The
ripple in the DD ZAM GTFR can be substantially
smaller than that of the Wigner distribution. The DD
GTFR, in particular, displays impressive ripple per-
rformance. It’s response prior to point of transition
is nearly zero. The spectrogram displays correspond-
ingly poor time resolution performance. (See Figures
1-4).

5. Noise sensitivity: When a signal is corrupted by addi-
tive white noise, the DD and ZAM GTFR’s displays
an unbiased estimate of the corresponding GTRF of
the noiseless signal. This is contrast to the Wigner
distribution and spectrogram where the power spec-
tral density of the noise is added to the result. Noise
sensitivity is ilustrated in Figure 5 for the TFR'’s of a
sequence of four tones.

The DD and ZAM GTFR’s are also real and shift-invariant.
As is the case with the spectrogram, the DD and ZAM

GLFR’s do mot obey the marginals, [1, 2] i.e. the integral
projection onto the time axis of the ZAM GTFR does not
result in the signal’s instantaneous power, nor does the pro-
Jection onto the frequency axis result in the power spectral
density. Thus, unlike the Wigner-Ville and Choi-Williams
d.istributions, the ZAM GTFR cannot be interpreted as a
time-frequency density function for the signals. Recent re-
sults [12] suggest, however, that significantly higher resolu-
tion in both time and frequency can be bought with sacrifice
of the marginals. The analytic and empirical results in this
paper are further evidence of this proposition.
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2 Characteristics of the DD and ZAM
GTFR’s

In this section, we derive some important performance at-
tributes of the continuous time DD and ZAM GTFR and
contrast them to the Wigner distribution and spectrogram.
A summary of some of our conclusions is listed in Table 1.
Other distributions and attributes will also be considered.
We will, in each case, define the attribute and analyze the
corresponding TFR performance.

The DD and ZAM GTFR’s

The general continuous time formula of Cohen’s GTFR class

T cwne [ [T (o)

2.1

X z* (u - %) e I dsdu (1)
where ¢(; 7) is the GTFR kernel.
The kernel function of the ZAM GTFR is
4 i
#n, )= oo (£) 2)

where p(7) is a windowing function and II(t) = 1 for | ¢ [< i
and is otherwise zero. For p(r) = 1/|7], we have Cohen’s
Born-Jordan kernel [1, 2]. Tapers other than uniform have
also been proposed [12].

If p(7) is identically zero for | T |> T, then cone shaped
region of support of (2) is shown in Figure 6.

A DD GTFR has a kernel that is zero in the double
diamonl area illustrated in Figure 6. The support of the
kernel i~ parameterized by 7. The DD GTFR can be written

as

x z* (5 - -;) eI dsdr (3)
where integration is over all (¢,7) in the double diamond
centered at ¢ = s. As with the ZAM GTFR, the DD GTFR
can be shown to be real when the kernel displays certain
symmetry constraints [1]. As is the case with the ZAM
GTFR, it can also be negative. Note that the DD kernel
is subsumed in the cone.

In the next section, we show that the positive portion
of both the ZAM and DD GTFR’s approach the same re-
sponse as that of the spectrogram for certain stationary sig-
nals. Note that by setting the negative portions of the ZAM
GTFR to zero, we obtain the projection onto the nearest
nonnegative function, i.e. we obtain the closest non-negative
time frequency representation in the mean square sense.

2.2 Stationary Signal Time Response

For a number of stationary tones, both the DD and ZAM
GTFR can approach a spectrogram as 7' increases. We will
give a detail proof for the case of the ZAM GTFR.

Let C(t, f;0) be the ZAM GTFR with

= 3(5)n(z)

where 8(«) is the normalized windowing function. Define

(4)

1 .
Om(a):/ uf(u)e™ 2 gy (5)
0



DD GTFR | ZAM GTFR | Spectrogram | Wigner
Asymptotically Spectrogram? yes yes yes no
Frequency Resolution better good best fair
Time Resolution:
o leakage... best better fair good
e rise lime... better best fair better
White Noise Bias? no no yes yes

Figure 5: Five TFR’s of a sequence of four tones in noise at
a 3dB SNR. The manner of computstion and display is the
same as is decribed in the caption of Figure 1.

and N
G)(z)((;r/\:/ Bu)e ¥ dy (6)
0

For the ZAM GTFR, p(r) = 0 for | 7[> T, we can write (2)
” Iz
L))
! ) = — Gl=zts+ =
(/(z7~f76]) !j"‘ /,_T _sz“ 11 T 2
X z” <ﬁ - %) eI T dsdr (7)

We can now state the following property for stationary sig-
nals with a finite number of frequency components.

)

Property 1 Assume that

I‘(t) o= Z }(iej%rj,t (8>

1f0(u) is bounded and has finite energy, then, for both ZAM
and DD GTFR’s

im Pos{C(t, f;8)] = A Z iXil?é(f - fi)

—r 00

where A is deternined by windowing. A proof for the ZAM
C'TFR is in Reference [11]

2.3 Interference Terms

A significant problem in many GTFR’s is the appearance
of nnwanted interfercnce terms. For two simultaneous fre-
quencies, the interference term typically appears midway be-
tween the frequencies. As is illustrated in Pigures 1-4, the
DD and ZAM GTTR’s reduce the interference terms signif-
icantly. Indced , from the results of the previous section on
the nsymtotic equivalonce of the DD and ZAM QTFR’s (o
the spectrograim, we are guaranteed no interference terms
midway between the frequency as 7 — oo.

Table 1: Summary of attributes of four time-frequency distributions. The text of the
paper should be consulted for elaboration on the meaning of and the specific methods
for determination of the entries.

¥
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Pigure 6: The cone (left) and double diamond (right) sup-
ports corresponding to a window duration of 27

To explore the interference properties for intermediate
values of T, assume the stationary signal in (8) has two
terms .

z(1) = X e/?™ht 4 X, o2 S20 (9)

For the ZAM GTFR, we can write

cfip=2 i+ P sp (10)
i 4j

It follows that the interference term is [11]

MCOS[QW{(/‘-I — f2)1+ (C‘] — Lg‘x

w(f1 = f2)
xIm[@@{(f — f)T} — 0B {(f — £)1)]

where the frequency midpoint is f = (f1 + f2)/2. The mag-
nitude of the interference is the cosine’s envelope,

oy +cf)

s = B et wa

where Af = |f1 — fo.

We will now show that the interference term can decrease
as O({T'Af*}~1) for both the DD and ZAM GTFR’s. We
here consider only the ZAM GTFR. If the window, 8(u), is
monotonically decreasing for 0 < u < 1, then

Im[OP ()] /] B(u)sin(27 fu)du
Q

5

IA

6’(0)/” sin(2x fu)du

0

6(0) .
w7 (12)
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[igure 7: Interference measures for the Wigner distribution,
ZAM GTTR, DD GTFR and spectrogram. The DD GTFR
and spectrogram plots use the log scale on the right and are
graphically indistinguishable. The ZAM GTFR and Wigner
use log scale on the left.

from which we conclude [| Im[@@)( £)] |<] 6(0)/(x f) |. Thus.
from (11), we have the following interference bound for the

ZAM GTFR.
X(AST) o 48(0)

XX < RTAP (13)

The interference is completely removed as T(A f)? — cc.

2.4 Frequency Resolution

An important characteristics of a GTFR is the closeness at
which two frequencies can be resolved. As we will show
that both the DD and ZAM GTFR can display quite good
frequency resolution properties.

Assume that the signal z() is as in (9) with X3
X. We will evaluate the resolution measure

STV = Ct, (1 + f2)/2 p)
B(t;T) = max{—aW}A

We now compare the performance of the spectrogram,
Wigner distribution, ZAM and DD GTFR’s using Hanning

=X, =

windows in each case. For a Hanning window, #(u) = cos?(ru/2).

I'irst, consider the ZAM GTFR. From (10). we can write

(1]

Ot £:0) = C(t, £,00+C(t, £;0)+C2 (0, £,0)+C2 (1, £16)

= 2| XPT{Re[0{(f — )T+ 0D {(f - £)T)]

A P o7 - Ty - 0®( - fTY])

Therefore,
Bzam(1,T) = max{BG ), BYhps} (14)

where
50 mpRe[0M)(p/2)] - Im[©(3)(p/2)]

7AaM mpRe[OM)(0) + 0W (p)] + Im{OP(0) + 6O (p)]
e mpRe[0M)(p/2)] + Im[0 ) (p/2)]

“AN 7pRe[O@1)(0) + O (p)] — Im[OF@ (0) + 6F(p)]

and p = (f1 — fo)T.
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For the spectrogram with a Hanning window, the reso-
lution measure is

5(47) = | TG, 09
For the Wigner distribution, we have
Bu(t;T) = +2511nt(;1)n~c}-(§i)nc(2p) (16)
Lastly, for the DD GTFR,
Bop(t,T) = max{By},, BS) (17)
where
B = 4[Re{0)(p/2)})°
Re{0P(0)} + Re{@D (p)}]? ~ [Im{0@)(p)})*
i (18
S0 _ —aIm{ ) (p/2)}"
PP [Re{0D)(0)} — Re{0C)(p)}]? - [Im{O(Z)(p)}](Zlg)

Figure 7 shows the resolution measures of the spectro-
graim, \Vlgner distribution, ZAM and DD GTFR’s rectan-
frulal and Hanning windows. Remarkably, the values for
b’ s(t;T) are graphically indistinguishable from that for the
double diamond Bpp(t; T). Note the different scales for the
plot.

2.5 Time Resolution

An important characteristic of a TFR is its response to rapid
nonstationarity. An indjcation of this property is the anal-
ysis of the TFR's response to a sinusoid whose frequency
changes abruptly. We can denote such a signal by

z(t) = {

The performance of a TFR in resolving this transition will
be illustrated by the function

X oi27f1t
Xej21rf2i

t<0
t>0

C(t> f?: ,0)
C(T7 f?; p)

For the rectangular windowed double diamond, this func-
tion is

) =

€1+ ) {rsinc(2yp) + (1 — y)sinc2(1 — N[}
+3{(1 = )?sinc{(1 - 7)p]
~y*sinc?(vp) — sinc*(yp)} 5 <0
v+ (1 - y)sine[2(1 ~)p] ; >0
where v = t/T.
For the rectangular windowed ZAM GTTFR, this function

Cop(t;T) =

[sinc(p)]? — 27ysine(2p) — 29%[sinc(yp))?
+279(1 4 y)sinc(2yp) ;1 <0
L= (1= 11 = (sincl(1 = M)}t > 0.

The corresponding functions for the Wigner distribution and
spectrogram are, respectively,

Cy(t;T) = {

and

Czam(;T) =

t<0
t>0

2ysinc[yp) + [1 — y)sinc[[1 — V)p} ;
v+ [1 = y)sinc[[1 ~ 7)p] ;
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Figure 8: The response of an abrupt freequency transtition
from f, to fo monitored at f, for the Wigner distribution,
spectrogram, ZAM GTTR and DD GTFR for (f — f2)T =
50. The DD GTFR displays quite a good rise time without
oscillation.
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Figure 9: Same as the previous figure, except (fi=F)T = 5.
The DD GTTR again displays quite a good rise time without
oscillation.

Ly,
Xh]

+(L — y)*{sinc[{1 - 7)p}}*)

Iligure 8 and 9 show the response on {requency line f, for
four TT'R’s. Note that, in both figures, the DD GTTR re-
sponse doos not oscillate prior to the transition, yet displays
quite a sharp temporal respouse. The plot in Figure 9 is re-
drawn at a different scale in Figure 10 to investigate leakage
effects. The DD GTTFR clearly has the best leakage property
of those TI'R’s shown.

+9)? + 2{1 - v¥)sinc2(1 — ¥)p)

2.6  Noise Effects

A significant problem of the Wigner distribution is its high
noise sensitivity. To compare the noise properties of TFRs,
we assume that the signal under examination is corrupted
by and zero mean wide sense stationary noise, n(t), with
autocorrelation

R(r) = Bln(s + %)n*(s - ;‘;-)] = Nob(r)  (20)
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Figure 10: Same as the previous figure, except the scale has
been changed to examine leakage. The DD GTTR lLas the
best property in this regard.

where ‘E’ denotes the expectation operator. For a GTTR
which satisfies the marginal constraints, the mean of the
GTTR result is the sum of the value of the GTTFR without
noise and the spectral density of the noise [13, 14]. Such
is the case for the CW GTFR and the Wigner distribution.
Such is not the case for the DD or ZAM GTFR’s. We can
establish, rather, the following useful property.

Property 2 Let the kernel, $(1;7) be such that

SN
/ ¢(t;0)dt = 0 (21)
-0
Then, when a signal is corrupted by wide sense stationary
noise, the resulting GTFR will be an unbiased estimate of
the GTFR of the signal without noise.

A proofis in reference [11]. Since both the DD and ZAM
GTFR pinch to zero at the origin of the (¢,7) plane, they
salisfy (21). Thus, in the presence of wide sense station-
ary white noise, the DD and ZAM GTFR’s gencrates an
unbiased estimate of the ZAM GTFR without noise. The
unbiasedness, however, comes at the price of no longer being
able to satisfy the instantaneous power marginal. In other
words, unlike the Wigner distribution and CW GTFR, the
integration of the ZAM GTFR over all frequency does not
result in the instantaneous power of the signal [1].

3 Conclusion

We have investigated relative performance attributes of the
ZAM and DD GTRI’s. The DD GTRE appears to have
some quite remarkable performance attributes. Further work
is required to further define and understand the extent and
limitations of some of these properties.
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